
An Introduction to Input/Output
Using MPI for the 1-D

Decomposed Stommel Model

Luke Lonergan
High Performance Technologies, Inc.

Parallel I/O Exercise
Description of Problem
Overview of Alternative Approaches
Development of Basic Approach
Description of Scalable I/O Approach (Next Steps)
Performance Profiling Laboratory

Flowchart for the Serial Code
Main
Program

NAMELIST

FORCING

RESTARTIN

COEFF

BCS

RESIDUAL

JACOBI

RESTARTOUT

Iterate for
ITCNT
Times

I/O Problem Description
Input and Output needs to be enabled in the Stommel
MPI code
We will focus on the Forcing file I/O as our example
case:

May have been created from a serial run in our
example code.
Preferably created once, then read for subsequent
runs.
In a real oceanography code, came from another
program or data source in a single file.

I/O Problem Description
Assumptions:

Main program is sized too small to read the
whole file
There is a shared file system available to all
processors, but it is located on one system

Shared File System

Processor Processor

Processor Processor
NFS
Server

NFS
Client

NFS
Client

NFS
Client

Real
Disk

I/O Problem Description (Cont’d)
Depending on our requirements, we may need
scalable I/O

If we performed reads or writes to files every time
step
If the I/O at startup/shutdown is a significant
fraction of execution time
If the shared file system performance is poor
...

Distributed File System

Processor Processor

Processor Processor
NFS
Server

NFS
Client

NFS
Client

NFS
Client

Real
Disk

Real
Disk

Real
Disk

Real
Disk

Distributed File System
If we take advantage of the distributed file system for
scalable I/O, we need to distribute subdivided pieces
of the file to the separate disk subsystems
We now have the problem of files not necessarily
being on the same processor where they are needed

Simultaneous I/O
If our N copies of the Stommel program are reading
and writing the same file at the same time, they will
“bump heads” with unpredictable results for writes:

Processor

Processor

Processor

Processor

Same Disk
Block is Written
by Two
Processes
Simultaneously

Alternative Approaches

11

Approach A: (Scalable [with 2N possible messages]
but hard)

 If the file named with the type.{rank#}
designation does not exist on the local processor,
generate it there on the local filesystem, if possible.
 If it is not possible to generate the file, segment a
pre-existing file into pieces and copy the right
piece to the local filesystem.

Approach A (Cont’d)
If a file does exist with type.{rank#}, read it. If the
{rank#} does not match the rank of the process
reading it, initiate a message to the appropriate
rank with the contents of the forcing file.
Wait for a message from any other rank with the
contents of this rank's file.

Approach B
Approach B: (Scalable and easier than A, with 2N less
messages)

 If the file named with the type.{rank#}
designation does not exist on the local processor,
generate it there on the local filesystem, if possible.
(Same as A)
 If it is not possible to generate the file, segment a
pre-existing file into pieces and copy the right
piece to the local filesystem. (Same as A)

Approach B (Cont’d)
If a file does exist with type.{rank#}, read it. Create a
new communicator that establishes this processor's
rank as the same as that of the file it has read.

Approach C
Approach C: (Not Scalable, but relatively simple and
High Performance)

 If the file named with the type.{rank#}
designation does not exist on the _shared_
filesystem, generate it there. If it is not possible to
generate the file, segment a pre-existing file into
pieces in place on the shared filesystem.
 If a file does exist with type.{_my_rank#}, read it.

Create a New Format Forcing File
We select a new file format due to the need to
decompose the forcing function array into pieces, one
for each file segment
Decomposition and Reconstruction are made simpler
as a result

Create a New Format Forcing File
Change directory to mpi_1d_io/step1
Edit the README file
Recommended Approach:

Look through the main program
Type “make” to compile and link an executable
Run the program to create a forcing file with the
new format

Chop the Forcing File into Pieces
Process is called segmentation
This technique is the most generalizable approach for
parallel I/O
If you can do I/O this way, you can do it on any
distributed memory parallel machine
The process in general:

Read in the whole file (not necessarily required,
but we’ll do it this way)
Write out one piece of the file at a time into a
unique file name, in this case derived from the
original name

JtotalJtotal = 14, = 14, ∆∆y y = 1, = 1, YtotalYtotal = 13 = 13
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••
 •• •• •• •• •• •• •• •• •• •• •• •• •• ••

Decomposing the Forcing Function
y(j) = (j-1) y(j) = (j-1) ∗∆∗∆ yy y(j) = ystart+ (j-1) y(j) = ystart+ (j-1) ∗∆∗∆ yy
j(y) = y/j(y) = y/∆∆y + 1y + 1 ystartystart = rank = rank∗∗ (myny-2) (myny-2) ∗∆∗∆ yy

jstart jstart = rank*(= rank*(mynymyny-2) + 1-2) + 1

 NprocsNprocs = 3, = 3, MyNY MyNY = 6 = 6
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••
•• •• •• •• •• •• •• •• •• •• •• •• •• ••

Rank = 0,Rank = 0, Ystart Ystart = 0, = 0, Jstart Jstart = 1= 1

Rank = 1, Rank = 1, YstartYstart = 4, = 4, Jstart Jstart = 5 = 5

Rank = 1, Rank = 1, YstartYstart = 8, = 8, JstartJstart = 9 = 9

Chop the Forcing File into Pieces
Change directory to mpi_1d_io/step2
Edit the README file
Recommended Approach:

Look through the main program
Type “make” to compile and link an executable
Copy the forcing file we created in step1 to the
local directory, I.e. “cp ../step1/force.in .”
Run the program to chop up force.in into
force.in.[0,1,2,3,…, Nprocs]

Chop the Forcing File into Pieces
Experiment with different number of processors to
chop the file into

Remember, the problem is only divisible by certain
numbers, namely those that evenly divide (NJ-2),
I.e. NPROC is valid if:

mod((NJ-2),NPROC) = 0

Re-Assemble the Forcing File
Change directory to mpi_1d_io/step3
Edit the README file
Recommended Approach:

Look through the main program
Type “make” to compile and link an executable
Copy the chopped forcing file we created in step2
to the local directory, I.e. “cp ../step2/force.in.* .”
Run the program to put force.in back together
again

Run Stommel_mpi1d with I/O!
Change directory to mpi_1d_io/step4
Edit the README file
Recommended Approach:

Look through the main program and forcing.f
Type “make” to compile and link an executable
Run the complete MPI stommel code with the
number of compiled processors

This will use the NFS filesystem

Run Stommel_mpi1d with I/O!
Edit forcing.f and change the name of the forcing file
base from “force.in” to “/tmp/my_initials_force.in”
Re-compile by typing ‘make’
Run the code with the compiled number of processors

This will use the distributed filesystems of the
processors you are using!
Note the difference in runtime and Mflops

